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Abstract
The propagation of damage on the square Ising lattice with a corner geometry
is studied by means of Monte Carlo simulations. By imposing free boundary
conditions at which competing boundary magnetic fields ±h are applied, the
system undergoes a filling transition at a temperature Tf(h) lower than the
Onsager critical temperature TC. The competing fields cause the formation of
two magnetic domains with opposite orientation of the magnetization, separated
by an interface that for T larger than Tf(h) (but T < TC) runs along the diagonal
of the sample that connects the corners where the magnetic fields of different
orientation meet. Also, for T < Tf(h) this interface is localized either close to
the corner where the magnetic field is positive or close to the opposite one, with
the same probability.

It is found that, just at T = Tf(h), the damage initially propagates along
the interface of the competing domains, according to a power law given by
D(t) ∝ tη. The value obtained for the dynamic exponent (η∗ = 0.89(1))
is in agreement with that corresponding to the wetting transition in the slit
geometry (Abraham model) given by ηWT = 0.91(1). However, for later times
the propagation crosses to a new regime such as η∗∗ = 0.40(2), which is due to
the propagation of the damage into the bulk of the magnetic domains. This result
can be understood as being due to the constraints imposed on the propagation of
damage by the corner geometry of the system that cause healing at the corners
where the interface is attached.

The critical points for the damage-spreading transition (TD(h)) are
evaluated by extrapolation to the thermodynamic limit by using a finite-size
scaling approach. Considering error bars, an overlap between the filling and the
damage-spreading transitions is found, such that Tf(h) = TD(h).

The probability distribution of the damage average position P(l D
0 ) and that

of the interface between magnetic domains of different orientation P(l0) are
evaluated and compared. It is found that, within the nonwet phase, the average
position of the damage lies slightly shifted from the interface towards the side
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of the largest domain. However, in the wet phase both P(l D
0 ) and P(l0) are

Gaussians exhibiting a single peak at the position of the diagonal of the corner
sample.

1. Introduction

The interplay between critical behaviour and confinement is a challenging topic in the field
of Condensed Matter and Statistical Physics. In fact, the confinement of fluids, polymers,
magnetic materials, etc, by walls that interact with the physical system, leads to the occurrence
of very interesting phenomena such as capillary condensation, wetting, corner wetting (filling),
etc [1, 2].

Particularly interesting is the case of confinement in two dimensions (d = 2) close to
second-order critical phenomena, due to the occurrence of strong fluctuations. Within this
context the classical Ising model has been taken as an archetypical system for the study of
capillary condensation, wetting and corner filling by means of analytical techniques (capillary
wave theories, transfer matrix method, etc) and extensive numerical simulations [3–8] (for a
review see e.g. [9] and references therein).

Wetting is usually studied by using the strip geometry shown in figure 1. In this case, the
presence of competing magnetic fields (h) along the confinement walls induces the formation of
an interface between domains where most spins are pointing up and down. This interface runs
essentially parallel to the walls, and in a finite system, it undergoes a localization–delocalization
‘transition’ that is the precursor of a true second-order wetting transition that takes place in the
thermodynamic limit only (L → ∞, M → ∞). The phase diagram (i.e. the critical curve in
the h–T plane, as shown in figure 3) has been solved exactly by Abraham [3, 4], yielding

cosh(2hβ) = cosh(2K ) − e−2K sinh(2K ), (1)

where J > 0 is the coupling constant, h is the surface magnetic field, β = 1/kT is the
Boltzmann factor, and K = Jβ .

On the other hand, the study of corner filling is performed by using the geometry
sketched in figure 2, where the competing magnetic fields are applied at opposite corners.
The study of this filling transition under equilibrium conditions has recently attracted growing
attention [10–38]. Also, the filling transition upon the irreversible growth of a magnetic system
has very recently been studied [39]. In both cases, the occurrence of an interface is due to the
presence of competing fields. The localization–delocalization transition of the interface in a
finite system yields to a true second-order corner-filling transition in the thermodynamic limit
(L → ∞). The analytical expression of the equilibrium phase diagram was early conjectured
by Parry et al [22] and more recently proved rigorously by Abraham and Maciolek [25],
yielding

cosh(2hβ) = cosh(2K ) − e−2K sinh2(2K ). (2)

The critical curve is presented in figure 3, showing that for a given surface magnetic field,
the filling transition takes place at a lower temperature than the wetting transition, except of
course for h = 0, where both curves converge to the Onsager critical temperature of the Ising
model (TC).

In previous work we showed that the presence of interfaces between magnetic domains
of different orientations, such as those observed close to the wetting transition, favours the
propagation of perturbations in magnetic materials [40–42]. A standard technique frequently
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Figure 1. Strip geometry of size L × M. The surface magnetic fields of different orientations
applied at the upper (bottom) rows of the lattice are indicated by + (−) signs. Notice that periodic
(open) boundary conditions are assumed along the x (y) axis. See notation and further details in the
text.
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Figure 2. Corner geometry of size L × L . The signs + and − indicate the surfaces where the
competing surface magnetic fields are applied. In this case, the boundary conditions are open for all
sides of the sample. See notation and further details in the text.

used to study the propagation of perturbations is the measurement of the Hamming distance or
damage (D(t)), given by

D(t) = 1

2N

N∑

l

∣∣S A
l (t, T ) − SB

l (t, T )
∣∣ , (3)

where the summation runs over the total number of spins N , and the index l (1 � l � N) is
the label that identifies the spins of the configurations. S A(t, T ) is an equilibrium configuration
of the system at temperature T and time t , while SB (t, T ) is the perturbed configuration that
is obtained from the previous one just by flipping a few spins [43, 44]. In order to further
contribute to the understanding of the propagation of perturbations in magnetic materials and
to clarify the role played by both the interfaces and the confinement geometry, the aim of
this work is to report an extensive computer simulation study of damage spreading close to
the corner-filling transition of the d = 2 Ising model. Furthermore, the results obtained will
be discussed within the context of our current knowledge of the corner-filling transition [29]
and compared with our previous studies of damage propagation in the strip geometry where a
wetting transition is observed [40–42]. While in both cases one has fluctuating interfaces due to
the presence of competing fields, the geometries used are quite different (see e.g. figures 1 and 2
for the sake of comparison), so we expect that this situation will help us to contribute to the
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Figure 3. Phase diagram of h versus T/TC. The dashed line corresponds to the wetting transition
(equation (1)) while the full line corresponds to the corner-filling transition (equation (2)). The
circles are obtained for damage transition at the strip geometry [42] and are shown for the sake of
comparison. The squares correspond to the results obtained in the present work for the damage-
spreading transition at the corner geometry.

understanding of the effect of confinement on the properties of interfaces and the propagation
of damage along them.

This paper is organized as follows. In section 2 we describe the corner-wetting transition
and the Monte Carlo simulation method. In section 3 we present and discuss the results
obtained. Finally, the conclusions are stated in section 4.

2. Brief overview of the corner-filling transition and the simulation method

The Hamiltonian (H) for the Ising model in the corner geometry with competing short-range
local fields at the boundaries, as sketched in figure 2, is given by

H = −J
∑

〈i, j,m,n〉
σi, jσm,n − h

∑

i

σi,1 − h
∑

j

σL , j + h
∑

j

σ1, j + h
∑

i

σi,L , (4)

where σi, j = ±1 is the spin variable, J > 0 is the coupling constant, and h is the magnitude
of the surface field. The first summation runs over all spins, while the remaining ones hold
for spins at the surfaces where the magnetic fields are applied (see also figure 2) and h > 0 is
measured in units of J .

It is very useful to discuss the filling transition of a cavity by using the mapping between
the Ising model and a lattice gas. So, by considering the transformation spin-up ⇔ vapour,
and spin-down ⇔ liquid, respectively, one has that the delocalization of the interface can be
thought of as the growth of a macroscopic liquid layer wetting the substratum. Let us consider
a corner cavity forming an angle ±φ with the horizontal axis, as shown in figure 2. We further
assume that the system is in contact with the vapour phase of the bulk at a certain temperature T
and chemical potential μ, so that at coexistence one has μ = μsat. According to (macroscopic)
thermodynamic arguments it has been shown [17] that complete filling by the liquid is observed
for T � Tf, where Tf is the filling temperature given by

θ(Tf) = φ, (5)

where θ(Tf) is the contact angle of the liquid with the flat substratum. Consequently, one has
that Tf < Tw, where Tw is the critical temperature for the wetting of the plane by the liquid.
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The case studied here corresponds to φ = π/4 (see figure 2). The corner-filling transition
of the Ising model is of second order, so one has power-law behaviour of relevant quantities
such that the average interface position in the y-direction (〈l0〉), and the parallel (ξx ) and
the perpendicular (ξ⊥) correlation lengths (see figure 2) that describe the fluctuations of the
interface in their respective directions, behave as follows:

〈l0〉 ∝ ε−βs ; ξ⊥ ∝ ε−ν⊥; ξx ∝ ε−νx , (6)

where ε = (hC(T ) − h) is the distance to the critical curve, βs = 1 is the order parameter
critical exponent1, and ν⊥ = νx = 1 are the correlation length exponents in the direction
perpendicular and parallel to the interface, respectively [29].

On the other hand, the probability distribution of the position of the interface is given by

P(l0, ε) ∝ 1

〈l0〉P
(

l0

〈l0〉 ,
ξ⊥
〈l0〉

)
, (7)

where the second scaling variable can be neglected close to criticality because both 〈l0〉 and ξ⊥
diverge with the same critical exponent (see equation (6)). Furthermore, at criticality and for
L → ∞, ε → 0 one has [17]

P(l0) ∝ 1

〈l0〉 exp (−l0/〈l0〉), (8)

indicating that the probability of finding the interface close to the walls decays exponentially.
For large enough lattices, equation (8) can be symmetrized so that

P(l0) ∝ 1

2〈l0〉
[

exp

(−l0

〈l0〉
)

+ exp

(−(L − l0)

〈l0〉
)]

. (9)

All these equations hold for the localized interface below but close to the critical curve shown
in figure 3.

On the other hand, at the critical point the distribution is expected to be flat [17], namely

P(l0; ε = 0) = 1

L
, L → ∞, (10)

so that the interface can be located at any place with the same probability.
Above the filling transition the average position of the interface lies along the diagonal of

the sample with 〈l0〉 = L/2,2 and then the distribution is a Gaussian given by

P(l0) ∝ exp

(
−[l0 − 〈l0〉]2

2ξ 2
⊥

)
(11)

with ξ⊥ ∝ L
1
2 . For further details of the corner-filling transition see [17] and references therein.

The spreading of damage in the corner geometry is studied by means of Monte Carlo
simulations assuming Glauber dynamics. So, a randomly selected spin is flipped with
probability p(flip) given by [45]

p(flip) = exp(−β · �H )

1 + exp(−β · �H )
, (12)

where �H is the change of the Hamiltonian given by equation (4) due to the attempted flip
and β = 1/kT is the Boltzmann factor. In order to set the timescale, we assume that during
a Monte Carlo time step (mcs) all spins of the system (L × L in total) have the chance to be
flipped once, on average.

1 Notice that for both the wetting and the corner-filling transitions the magnetization is no longer the appropriate order
parameter, as in the Ising model, but the average location of the interface 〈l0〉. So 〈l0〉 ∝ t−βs describes the divergence
of the localized interface when the critical point is approached from below.
2 Notice that 〈l0〉 is measured in lattice units, so the total length of the lattice diagonal is L .
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Figure 4. Log–log plot of damage (D(t)) as a function of time. Results obtained for different values
of the surface magnetic fields h, as listed in the figure. The simulations were performed by using
a lattice of size L = 256 and for T = 0.80TC. The dashed line has slope η∗∗ = 0.40. Results
averaged over 5 × 102 different samples.

3. Results and discussion

Simulations were performed on the square lattice of size L × L (64 � L � 2048) by using
the geometry shown in figure 2 and by assuming open boundary conditions. Most simulations
were performed by keeping the temperature constant (0.75 � T/TC � 0.95) and changing the
magnitude of the surface field (0.1 � h � 0.35). These ranges for the parameters were selected
to avoid corrections due to the standard critical behaviour of the Ising magnet that appear for
T → TC and h → 0. Results presented are averaged over 104 and 5 × 102 different samples
for lattices of size 32 � L � 64 and 128 � L � 2048, respectively.

The dynamic behaviour of the system was characterized by measuring the total damage
or Hamming distance according to equation (3) and the probability distribution of the distance
between the damage interface and the corner P(l D

0 ) (see figure 2).
In order to obtain equilibrated configurations, the ground-state configuration correspond-

ing to T = 0 (all spins pointing up) was annealed up to the desired set (h, T ) for 104 mcs.
Subsequently, initial damage was created by flipping the spins of the diagonal perpendicular to
the interface (i.e. along the vertical direction in figure 2) according to this general rule: if the
magnetization of the whole sample is positive (negative), the up (down) spins are flipped. Using
this procedure, it is assured that the initial damage is always D(t = 0) � L/2 (see footnote 2).
This kind of perturbation reproduces the effect of a large magnetic field applied to the diagonal
of the sample and pointing away from the direction opposite to the total magnetization.

Subsequently, the time evolution of the damage was recorded. Figure 4 shows plots of
D(t) versus t obtained by keeping T = 0.80TC constant and varying the surface field h.
The observed behaviour resembles the results, already published, corresponding to the wetting
transition in a strip geometry [42]. In fact, the short-time behaviour of the curves involves
the healing of the damage initially created in the bulk of the domains that takes place up to
t ∼ 50 mcs. Subsequently, the propagation of the damage along the interface becomes relevant.
While for weak fields one observes damage healing (e.g. h � 0.35), by increasing the field the
damage starts to propagate monotonically and a power-law behaviour of the form
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Figure 5. Log–log plot of D(t) versus t , obtained for T = 0.80TC and at the size-dependent
‘critical’ magnetic field hD(L): hD(L = 256) = 0.355, hD(L = 512) = 0.3675, hD(L = 1024) =
0.37, and hD(L = 2048) = 0.38. The dashed line has slope η∗ = 0.89 and the dotted line has
slope η∗∗ = 0.40. The dashed–dotted line shows the slight dependence of the minimum value of
the damage (D(tmin)) on L . Results averaged over 5 × 102 different samples. The inset shows a
linear–linear plot of D(tmin) versus L−2.

D(t) ∝ tη, (13)

where η is an exponent, can be proposed as in the case of the strip geometry [42].
The onset of a power-law divergence, for a sample of size L, is considered as the signature

for a size-dependent ‘critical’ behaviour of the damage process. In fact, as shown in figure 5, the
power-law behaviour is observed at slightly different surface magnetic fields when the size of
the lattice is changed. Moreover, simulations performed using lattices of different size confirm
that the power-law behaviour of the damage becomes more evident for larger samples, as shown
in figure 5. These results anticipate that one would need to perform a proper extrapolation of the
data in order to obtain the actual critical points in the thermodynamic limit. Before tackling this
issue, let us first discuss the behaviour of D(t) as shown in figure 5. An overview inspection
reveals that three different time regimes can easily be distinguished, as follows.

(1) During the short-time regime (t < tmin), the damage decreases monotonically, reaching an
absolute minimum at tmin, which only depends slightly on the lattice size (see the dashed–
dotted line in figure 5). This behaviour can be understood by recalling that the damage
is initially generated along a diagonal line of the sample, in the direction perpendicular
to the spin-up–spin-down interface (see figure 2). This initial condition creates—almost
linear—damaged regions in the bulk of well-ordered magnetic domains (see the snapshot
of figure 7 taken for t = 1 mcs). Due to the very low density of broken bonds in the bulk,
the damage cannot propagate and becomes quickly healed (see the snapshot of figure 7
taken for t = 5 mcs) while a small fraction of the initially created damage still remains
at the interface (see the snapshot of figure 7 taken for t = 28 mcs). Since the initial
damage is distributed along the line one has D(t = 0) ∼ L−1, in agreement with the
equispaced intercepts shown in figure 5 for t = 0. However, at tmin one has only a few
damaged sites along the centre of the interface, so one expects D(tmin) ∼ L−2, a result that
is corroborated by the numerical data as shown in the inset of figure 5. Summing up, the
initial decrease of the damage is due to damage healing in the bulk.
After reaching tmin one observes the growth of the damage. This behaviour can be better
observed in the scaled plot of figure 6 that attempts to collapse all curves corresponding
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Figure 6. Scaling plot (D(t) · L2 versus t) of the data shown in figure 5. The departure of the data
observed for t → 0 is consistent with the initial condition involving the generation of a damaged line
with D(0) ∼ L−1. The dashed line has slope η∗ = 0.89 and the dotted line has slope η∗∗ = 0.40.

to different lattices. Recall that a perfect collapse cannot be achieved not only due to the
existence of prefactors but also because D(t = 0) ∼ L−1 while D(tmin) ∼ L−2. However,
the scaling plot of figure 6 is useful in order to clearly show the power-law divergence of
the damage above tmin. Here, two well-defined regions can also be distinguished (recall
that these regions also become evident in figure 5).

(2) For t > tmin the damage increases according to equation (13) and the best fit for the data
gives η∗ = 0.89(1) (see the dashed line in figure 6). It is worth mentioning that this
exponent is in good agreement with our previous measurement of damage spreading along
the interface in the strip geometry (see figure 1) at the wetting transition, which yields
ηWT = 0.91(1) [42]. So, we conclude that the critical increase of the damage, which
takes place for tmin < t < tcross, where tcross is the crossover time to a third regime that
will be discussed below, is due to the propagation of damage along the spin-up–spin-down
interface characteristic of the filling transition. This statement is further confirmed by the
snapshot configuration shown in figure 7 for t = 500 mcs. Then, one has that the exponent
describing the propagation of the damage along the interface between magnetic domains
of opposite magnetization is given by η I = 0.90(2), where the error bars are large enough
to account for the fact that η I = ηWT = η∗. Our findings are also consistent with the fact
that the propagation of damage along the interface may be independent of the nature of the
studied phenomena—wetting or filling—provided that the measurements are performed at
criticality.

(3) Let us now discuss the propagation of damage after the crossover time tcross. Here, a
power law is also observed (see the dotted line in figure 6) but the best fit of the data
according to equation (13) yields η∗∗ = 0.40(2). This result, measured at the critical point,
depends neither on L nor on hD(L). So, we conclude that this exponent characterizes the
propagation of the damage from the interface into the bulk of the corner geometry (see
the snapshot of figure 7 taken for t = 50 000 mcs). At this latter stage the propagation
of the damage along the interface has ceased due to the constraint imposed by the corner
geometry and one observes a slower propagation (η I > η∗∗) into the bulk adjacent to the
interface. Also notice that the damage generated along the interface and close to it follows
the fluctuations of the actual position of the interface.

8
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Figure 7. (a) Snapshots of equilibrium configurations obtained at T = 0.8TC, h = 0.37, L = 256,
and different times from top to bottom: t = 1 mcs, t = 5 mcs, t = 28 mcs, t = 500 mcs, and
t = 500 00 mcs. (b) Snapshot pictures of the damaged sites obtained from the lattices shown in (a)
by applying linear damage along the diagonal. Damaged sites are shown in black and undamaged
sites are left white.

Of course, during the second time regime (tmin < t < tcross) the damage does not strictly
propagate along the interface only, since one also expects the onset of propagation in the
direction perpendicular to it. However, due to the fact that the magnitudes of the exponents
are quite different, this effect is no longer observed in the simulations.

After discussing the dynamics of the damage, we would like to focus our attention on
the location of the damage-spreading critical points in order to draw the corresponding phase

9
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Figure 8. Plots of the size-dependent ‘critical’ magnetic fields of the damage transition hD(L) as a
function of L−2, as obtained for the temperatures listed in the figure.

Table 1. Critical field for damage spreading (hD(∞)) obtained by extrapolation to the
thermodynamic limit with the aid of equation (14). The third column corresponds to exact values
of the critical field corresponding to the filling transition as obtained by using equation (2).

T/TC hD(∞) (14) hf(∞) (1)

0.75 0.400(5) 0.3975
0.80 0.360(5) 0.3505
0.90 0.245(5) 0.2411
0.95 0.175(5) 0.1683

diagram. For this purpose, note that the best fit of the power-law behaviour according to
equation (13)—within the long-time behaviour for t > tcross—allows us to identify the size-
dependent critical field (hD(L)) for a given temperature (see e.g. figure 5 that corresponds
to T = 0.80TC). It is well known that in numerical simulations, performed by using finite
samples, ‘critical’ points are shifted and rounded due to finite size effects. So, as in the case
of the wetting transition [8], we propose the following ansatz for the shifting of the damage-
healing critical point:

hD(L) − hD(∞) ∼ L−γ , T = constant (14)

where γ is an exponent and hD(∞) is the true critical field in the thermodynamic limit.
The best fits for the data corresponding to four different temperatures, as shown in figure 8,

were obtained by taking γ = 2. The extrapolated values of the critical field are listed in table 1
that also includes, for the sake of comparison, the critical fields obtained by solving the exact
solution of the corner-filling phase diagram [3, 4] given by equation (2).

As follows from table 1 and figure 3, the critical points for damage spreading in the corner
geometry are indistinguishable from those of the exact solution of the filling transition (within
error bars). This result is in contrast with our previous studies close to the wetting transition
in a strip geometry where one has hD(∞) < hw(∞) (see also figure 3) and the damage-
spreading transition is located in the nonwet phase of the phase diagram. We expect that this
behaviour may be due to geometrical constraints imposed by the corner array. In fact, in the

10
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Figure 9. Plot of probability distribution of the position of the damage P(lD
0 ), obtained for

L = 128, T = 0.90TC, and different values of surface magnetic field h, as listed in the figure.

strip geometry and for h < hw(∞) one has that the interface is still bound to one of the walls.
However, even in this nonwet phase but close to the wetting transition, the damage propagates
along the interface without geometrical constraints. On the other hand, in the corner geometry
when the interface is bound to one corner, the spatial propagation of the damage is restricted.

In order to gain further insight into the spatiotemporal propagation of the damage we
also measured the probability distribution of the distance from the damage zone to the corner
(P(l D

0 )). The distribution was evaluated along the diagonal of the sample, as shown in figure 2.
Figure 9 shows a summary of the results obtained.

For h � hf(∞) (e.g. h = 0.20) the distribution is almost flat with two small peaks close to
the corners. Approaching the transition by increasing the field, these peaks develop and become
slightly shifted towards the centre of the sample (e.g. h = 0.21 and 0.22 in figure 9). This
double-peaked structure indicates that the damage remains bound to each corner with the same
probability as expected for the case of the nonwet phase. On the other hand, for h ∼ hf(∞)

(e.g. h = 0.23, 0.24 in figure 9) the distribution becomes a Gaussian centred along the middle
of the sample. The Gaussian structure of P(l D

0 ) remains even for h � hf(∞) (e.g. h = 0.30
in figure 9).

It is also very useful to compare P(l D
0 ) with the probability distribution of the position of

the interface between domains of opposite magnetization P(l0). Figure 10 shows plots of both
P(l D

0 ) and P(l0) obtained far below the filling transition. One observes that for the domain
interface P(l0) decays exponentially, as expected according to equation (9), indicating that
for this set (h, T ) such an interface is strongly localized close to each corner with the same
probability. On the other hand, while the interface of the damage is still bound, its average
position lies further apart from each corner, as evidenced by the double-peaked structure of
P(l D

0 ) (see figure 10). So, figure 10 provides clear evidence that the damage is located in the
neighbourhood of the interface between domains but slightly shifted towards the bulk of the
sample, or more specifically within the largest domain.

Close to the filling transition (figure 11) one has that the interface between domains
exhibits a flat distribution, as expected from equation (10), indicating that the interface could
be found at any place of the sample. However, P(l D

0 ) exhibits a single peak centred at the
middle of the sample reflecting the inertia of the damage in order to follow the displacement
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Figure 10. Probability distribution of the interface position P(l0) (full line) and damage P(lD
0 )

(dotted line) along the y-direction. Data corresponding to L = 128, T = 0.90TC, and h = 0.22 <

hf(∞). Results averaged over 5 × 102 different samples.
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Figure 11. Probability distribution of the interface position P(l0) (full line) and damage P(lD
0 )

(dotted line) along the y-direction, for L = 64, T = 0.90TC, and h = 0.24 ≈ hf(∞). Results
averaged over 5 × 102 different samples.

of the interface. Furthermore, the abrupt decay of the damage close to the corners, which is
evidenced in both figures 10 and 11, is due to the healing effect caused by the neighbouring
magnetic fields. This effect prevents the damage from approaching the corners acting as an
effective repulsive effect. Also, this result is consistent with our previous conclusion that the
damage is essentially located within the largest magnetic domain.

Finally, within the wet phase both P(l D
0 ) and P(l0) are centred around the diagonal of the

sample (see figure 12) in agreement with the fact that the interface is delocalized.
The main conclusions that follow from the comparison between P(l D

0 ) and P(l0) (see
figures 10–12) are, on the one hand, the operation of an effective repulsion of the damage at the
corners where the fields have the same sign, and, on the other hand, that the damage becomes
attached to the interface but preferentially located toward the largest domain. These results
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Figure 12. Probability distribution of the interface position P(l0) (squares) and damage P(lD
0 )

(circles) along the y-direction, for L = 128, T = 0.90TC, and h = 0.25 > hf(∞). The full line
corresponds to the Gaussian fit of the data. The data corresponding to P(l0) were multiplied by a
factor of 5 for the sake of clarity. Results averaged over 5 × 102 different samples.

are in contrast to previous observations performed by studying the spreading of the damage
close to the wetting transition using the strip geometry where the damage was uniformly and
symmetrically distributed along the interface between competing domains [42]. We expect that
this difference between corner and strip geometries may explain the fact that for the former the
phase diagram for damage spreading matches that of corner filling (figure 3) while for the latter
the damage critical points lie within the nonwet phase (figure 3).

Let us now recall that, within the wet phase, the Gaussian distribution of the interface
profile (equation (11)) translates into a Gaussian distribution of the magnetization m given
by [29]

PL (m) ∝ exp

(
−m2L2β

2χL

)
(15)

where χL is the magnetic susceptibility and β = 1/kT is the Boltzmann factor. Equation (15)
simply reflects the fact that the interface is located, on average, along the diagonal of the sample,
the magnetic domains of different magnetization having the same average size. On the other
hand, the susceptibility diverges with the lattice size according to χL ∝ 〈M2〉 ∝ L [29]. In
view of these facts we also measured the width of the Gaussian distributions P(l D

0 ) (see the
full line in figure 12) within the wet phase, given by 〈s2

D〉. The inset of figure 13 shows log–log
plots of 〈s2

D〉 versus [h − hf] obtained by keeping T = 0.90TC constant and for different lattice
sizes. A preliminary inspection shows that 〈s2

D〉 increases when the field approaches the critical
value, as well as when larger lattices are considered, suggesting that 〈s2

D〉 ∼ χL , within the wet
phase. In order to test this observation, it is worth mentioning that starting from the distribution
of the magnetization (equation (15)) it is possible to obtain the standard relationship between
the susceptibility and the fluctuations of the order parameter given by [29]

kBT χ = L2(〈m2〉 − 〈|m|〉2) = L2 · χ̃(Lε), (16)

where |m| is the absolute value of the magnetization, χ̃(z) is a scaling function, and ε =
(hf − h). On the other hand, within the wet phase, one has ε < 0 and 〈|m|〉 = 0 (at least in
the thermodynamic limit). Then, if the proposed proportionality (〈s2

D〉 ∼ χL ) holds, one would
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Figure 13. The inset shows the width of the distribution of damage (P(lD
0 )) 〈s2

D〉 versus [h − hf],
obtained at T = 0.90TC and within the wet phase. Results correspond to different values of
the lattice size L , as indicated in the figure, while the main panel shows the collapse of the data
according to equation (17). Results averaged over 104 (5 × 102) different samples for lattices of
size L = 32, 64 (L = 128).

have

〈s2
D〉 ∼ L2 · f̃ (Lε), (17)

where f̃ is a scaling function. Figure 13 shows the corresponding scaling plot (s2
D〉L−2 versus

L(h − hf)) as obtained by using the data of the main panel. By considering the errors involved
and the relatively small samples that can be simulated with our computational resources, we
conclude that the collapse is acceptable and most likely equation (17) should hold.

4. Conclusions

We studied the spreading of damage in the two-dimensional Ising model confined in a corner
geometry with a competing (short-range) magnetic field acting on the surfaces (see figure 2).
By considering the initial damage, created along one diagonal of the sample, in the direction
perpendicular to the interface between domains of opposite magnetization originated by the
applied fields, we conclude that the dynamics of damage spreading exhibits three characteristic
regimes.

(i) For short times, one observes the healing of the damage created in the bulk of the domains.
However, at the critical damage-spreading point, a small cluster of damaged sites always
survives close to the interface.

(ii) This small cluster propagates along the interface according to a power-law behaviour
D(t) ∝ tη∗

, with η∗ = 0.89(1). By comparing the results of the present work and
those already published [42] for the spreading of damage along the interface at the wetting
transition, we conclude that the exponent η I = 0.90(2) describes the critical propagation
of the damage along magnetic interfaces.

(iii) Finally, due to the constraint imposed by the corners where magnetic fields of opposite
direction meet, the damage no longer propagates along the surface but starts to slowly
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spread into the bulk of the domains. Within this regime one has D(t) ∝ tη∗∗
, where

η∗∗ = 0.40(2) is the exponent describing the spreading of the damage in the bulk.

We located the damage-spreading transition by proper extrapolation to the thermodynamic
limit. It is found that, within error bars, the phase diagram coincides with that of the corner-
filling transition. This result is in contrast to the previous study of the wetting transition
where the damage-spreading transition lies within the wet phase. This difference can be
understood on the basis of the constraint imposed by the field acting at the corners, causing
a repulsive effect on the damage. This repulsive effect is nicely observed in measurements of
the probability distribution of the damaged area within the nonwet phase. Finally, in the wet
phase the distribution of the damage is Gaussian and its width scales as the fluctuations of the
magnetization.

We hope that this study will contribute to the understanding of the propagation of magnetic
perturbations along magnetic interfaces, as well as to the understanding of more complex
damage-spreading transitions that depart from the universality class of directed percolation.
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[21] Bednorz A and Napiórkowski M 2001 Phys. Rev. E 63 031602
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